Shape memory alloy actuators and their reliability

نویسندگان

  • O. Tohyama
  • S. Maeda
  • K. Abe
  • M. Murayama
چکیده

We have developed two types of shape memory alloy (SMA) actuator and estimated the long-term reliability of SMA microcoils. A tube type tip articulator consists of 4 sets of SMA microcoil (wire diameter: 0.125 mm, coil diameter: 0.5 mm) for driving source and super elastic alloy (SEA) microcoils (wire diameter: 0.1 mm, coil diameter: 0.5 mm) for bias springs, support plates and flexible outer tube. The tube type tip articulator was bent approximately 90 degrees in any directions when a 200 mA current was applied. The joint mechanism consists of base plate, universal joint, reflection plate (diameter: 170 mm), SMA microcoil springs (wire diameter: 0.1 mm, coil diameter: 0.9 mm) and bias spring. The joint mechanism showed good response for control values with maximum tilt angle of 3.2 degrees. We also estimated the thermal cycling behavior of SMA microcoil actuators with the resistance monitoring method. SMA microcoil actuators (wire diameter: 0.1 mm, coil diameter: 0.5 mm) were given 3.0% shear stress and heated by current. For 10,000 cycles, the force of SMA microcoil actuators was approximately constant and showed good long-term reliability. Since the results show good characteristics and reliability, SMA microcoil actuators can be used in a wide range of industrial and medical applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Hysteresis Identification and Micro-position Control of a Shape-Memory-Alloy Rod Actuator

In order to exhaustively exploit the high-level capabilities of shape memory alloys (SMAs), they must be applied in control systems applications. However, because of their hysteretic inherent, dilatory response, and nonlinear behavior, scientists are thwarted in their attempt to design controllers for actuators of such kind.  The current study aims at developing a micro-position control system ...

متن کامل

Characterization of Constrained Aged Niti Strips for Using In Artificial Muscle Actuators (Technical Note)

Marvelous bending/straightening effects of two-way shape memory alloy (TWSMA) help their employment in design and manufacturing of new medical appliances. Constrained ageing with bending load scheme can induce two-way shape memory effect (TWSME). Scanning electron microscope (SEM) analysis, electrical resistivity measurement (ERM) and differential scanning calorimetry (DSC) are employed to dete...

متن کامل

On the Desing and Test of a Prototype of Biped Actuated by Shape Memory Alloys

In this paper the design of a biped robot actuated with Shape Memory Alloy (SMA) springs with minimum degrees of freedom is presented. SMA springs are a class of smart materials that are known for their high power to mass and volume ratios. It was shown that utilizing spring type of SMAs have many advantages as large deformation, smooth motion, silent and clean movement compared to ordinary typ...

متن کامل

Shape Memory Alloy and Elastomer Composite MEMS Actuators

A process for fabrication of shape memory alloy MEMS actuators on a elastomeric polymer substrate is described. These actuators are designed for use on innovative soft body robots. Patterned shape memory alloy (nitinol) is sputter deposited on a polyimide mesh structure. The mesh substrate acts as a bias spring to de-twin the shape memory alloy in the martensite phase. Significant portions of t...

متن کامل

Adaptive Tunable Vibration Absorber using Shape Memory Alloy

This study presents a new approach to control the nonlinear dynamics of an adaptive absorber using shape memory alloy (SMA) element. Shape memory alloys are classified as smart materials that can remember their original shape after deformation. Stress and temperature-induced phase transformations are two typical behaviors of shape memory alloys. Changing the stiffness associated with phase tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001